Am I a Real or Fake Celebrity? Evaluating Face Recognition and Verification APIs under Deepfake Impersonation Attack

Published: 01 Jan 2022, Last Modified: 07 Oct 2024WWW 2022EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Recent advancements in web-based multimedia technologies, such as face recognition web services powered by deep learning, have been significant. As a result, companies such as Microsoft, Amazon, and Naver provide highly accurate commercial face recognition web services for a variety of multimedia applications. Naturally, such technologies face persistent threats, as virtually anyone with access to deepfakes can quickly launch impersonation attacks. These attacks pose a serious threat to authentication services, which rely heavily on the performance of their underlying face recognition technologies. Despite its gravity, deepfake abuse involving commercial web services and their robustness have not been thoroughly measured and investigated. By conducting a case study on celebrity face recognition, we examine the robustness of black-box commercial face recognition web APIs and open-source tools against Deepfake Impersonation (DI) attacks. While the majority of APIs do not make specific claims of deepfake robustness, we find that authentication mechanisms may get built one top of them, nonetheless. We demonstrate the vulnerability of face recognition technologies to DI attacks, achieving respective success rates of 78.0% for targeted (TA) attacks; we also propose mitigation strategies, lowering respective attack success rates to as low as 1.26% for TA attacks with adversarial training.
Loading