Benign Overfitting in Adversarially Robust Linear ClassificationDownload PDF

Published: 08 May 2023, Last Modified: 26 Jun 2023UAI 2023Readers: Everyone
Keywords: Benign Overfitting, Adversarially Robust Linear Classification
Abstract: ``Benign overfitting'', where classifiers memorize noisy training data yet still achieve a good generalization performance, has drawn great attention in the machine learning community. To explain this surprising phenomenon, a series of works have provided theoretical justification for over-parameterized linear regression, classification, and kernel methods. However, it is not clear if benign overfitting can occur in the presence of adversarial examples, i.e., examples with tiny and intentional perturbations to fool the classifiers. In this paper, we show that benign overfitting indeed occurs in adversarial training, a principled approach to defend against adversarial examples, on subGaussian mixture data. In detail, we prove the risk bounds of the adversarially trained linear classifier on the mixture of sub-Gaussian data under $\ell_p$ adversarial perturbations. Our result suggests that under moderate perturbations, adversarially trained linear classifiers can achieve the near-optimal standard and adversarial risks, despite overfitting the noisy training data. Numerical experiments validate our theoretical findings.
Supplementary Material: pdf
Other Supplementary Material: zip
0 Replies