Mamba-based Chemical Foundational Model for Fast Inference

27 Sept 2024 (modified: 25 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Mamba, foundation model, molecular property prediction, classification, molecular reconstruction, synthesis yield prediction
Abstract: We present a novel approach to chemical foundation models, leveraging structured state space sequence models (SSMs) to overcome the limitations of traditional Transformer-based architectures. While Transformers have achieved state-of-the-art results in chemical tasks such as property prediction and molecule generation, their self-attention mechanism is constrained by its inability to model data outside of a finite context window and its quadratic scaling with respect to window length. In contrast, SSMs offer a promising alternative for sequence modeling, enabling the capture of complex patterns and dependencies in molecular structures. Our Mamba architecture, a simplified end-to-end SSM-based neural network, eliminates the need for attention and MLP blocks, allowing for faster inference. We pre-train Mamba on a large, curated dataset of 91 million SMILES samples (equivalent to 4 billion molecular tokens) sourced from PubChem, and evaluate its performance on various benchmark datasets. Our experiments demonstrate the SSM's capacity to provide state-of-the-art results while maintaining fast inference, supporting complex tasks such as molecular property prediction, classification, molecular reconstruction, and synthesis yield prediction. This work advances the state-of-the-art in AI methodology in chemical sciences, offering a promising direction for future research in molecular modeling and discovery.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11844
Loading