EQA-MX: Embodied Question Answering using Multimodal Expression

Published: 16 Jan 2024, Last Modified: 15 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: multimodal representation learning, visual-language models, embodied question answering
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We present EQA-MX, a dataset and benchmark tasks for embodied multimodal QA, and VQ-Fusion model, enhancing visual-language alignment that outperforming existing models by 13%.
Abstract: Humans predominantly use verbal utterances and nonverbal gestures (e.g., eye gaze and pointing gestures) in their natural interactions. For instance, pointing gestures and verbal information is often required to comprehend questions such as "what object is that?" Thus, this question-answering (QA) task involves complex reasoning of multimodal expressions (verbal utterances and nonverbal gestures). However, prior works have explored QA tasks in non-embodied settings, where questions solely contain verbal utterances from a single verbal and visual perspective. In this paper, we have introduced 8 novel embodied question answering (EQA) tasks to develop learning models to comprehend embodied questions with multimodal expressions. We have developed a novel large-scale dataset, EQA-MX, with over 8 million diverse embodied QA data samples involving multimodal expressions from multiple visual and verbal perspectives. To learn salient multimodal representations from discrete verbal embeddings and continuous wrapping of multiview visual representations, we propose a vector-quantization (VQ) based multimodal representation learning model, VQ-Fusion, for the EQA tasks. Our extensive experimental results suggest that VQ-Fusion can improve the performance of existing state-of-the-art visual-language models up to 13% across EQA tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: datasets and benchmarks
Submission Number: 5897