Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: deep learing, self-supervised learning, time series analysis, anomaly detection, earthquake monitering
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Earthquake monitoring is a fundamental task to unravel the underlying physics of earthquakes and mitigate associated hazards for public safety. Distributed acoustic sensing, or DAS, which transforms pre-existing telecommunication cables into ultra-dense seismic networks, offers a cost-effective and scalable solution for next-generation earthquake monitoring. However, current approaches for earthquake monitoring primarily rely on supervised learning, while manually labeled DAS data is quite limited and it is difficult to obtain more annotated datasets. In this paper, we present DASFormer, a novel self-supervised pretraining technique on DAS data with a coarse-to-fine framework that models spatial-temporal signal correlation. Given the pretrained DASFormer, we treat earthquake monitoring as an anomaly detection task and demonstrate that the pretrained DASFormer can be successfully utilized as a seismic phase detector. Experimental results demonstrate that DASFormer is effective in terms of several evaluation metrics and outperforms state-of-the-art time-series forecasting, anomaly detection, and foundation models on several datasets in the seismic detection tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6627
Loading