SICAR at RRG2024: GPU Poor's Guide to Radiology Report Generation

Published: 01 Jan 2024, Last Modified: 18 Sept 2025BioNLP@ACL 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Radiology report generation (RRG) aims to create free-text radiology reports from clinical imaging. Our solution employs a lightweight multimodal language model (MLLM) enhanced with a two-stage post-processing strategy, utilizing a Large Language Model (LLM) to boost diagnostic accuracy and ensure patient safety. We introduce the “First, Do No Harm” SafetyNet, which incorporates Xraydar, an advanced X-ray classification model, to cross-verify the model outputs and specifically address false negatives from the MLLM. This comprehensive approach combines the efficiency of lightweight models with the robustness of thorough post-processing techniques, offering a reliable solution for radiology report generation. Our system achieved fourth place on the F1-Radgraph metric for findings generation in the Radiology Report Generation Shared Task (RRG24).
Loading