CityAnchor: City-scale 3D Visual Grounding with Multi-modality LLMs

Published: 22 Jan 2025, Last Modified: 28 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: 3D Visual Grounding, Large language model, multi-modality language model
TL;DR: We present a city-scale 3D visual grounding system to accurately find targets in point clouds from text descriptions.
Abstract: In this paper, we present a 3D visual grounding method called CityAnchor for localizing an urban object in a city-scale point cloud. Recent developments in multiview reconstruction enable us to reconstruct city-scale point clouds but how to conduct visual grounding on such a large-scale urban point cloud remains an open problem. Previous 3D visual grounding system mainly concentrates on localizing an object in an image or a small-scale point cloud, which is not accurate and efficient enough to scale up to a city-scale point cloud. We address this problem with a multi-modality LLM which consists of two stages, a coarse localization and a fine-grained matching. Given the text descriptions, the coarse localization stage locates possible regions on a projected 2D map of the point cloud while the fine-grained matching stage accurately determines the most matched object in these possible regions. We conduct experiments on the CityRefer dataset and a new synthetic dataset annotated by us, both of which demonstrate our method can produce accurate 3D visual grounding on a city-scale 3D point cloud.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2923
Loading