HiNoVa: A Novel Open-Set Detection Method for Automating RF Device AuthenticationDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 06 Feb 2024CoRR 2023Readers: Everyone
Abstract: New capabilities in wireless network security have been enabled by deep learning, which leverages patterns in radio frequency (RF) data to identify and authenticate devices. Open-set detection is an area of deep learning that identifies samples captured from new devices during deployment that were not part of the training set. Past work in open-set detection has mostly been applied to independent and identically distributed data such as images. In contrast, RF signal data present a unique set of challenges as the data forms a time series with non-linear time dependencies among the samples. We introduce a novel open-set detection approach based on the patterns of the hidden state values within a Convolutional Neural Network (CNN) Long Short-Term Memory (LSTM) model. Our approach greatly improves the Area Under the Precision-Recall Curve on LoRa, Wireless-WiFi, and Wired-WiFi datasets, and hence, can be used successfully to monitor and control unauthorized network access of wireless devices.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview