Keywords: federated learning, language-driven representation learning, data heterogeneity
Abstract: Non-Independent and Identically Distributed (Non-IID) training data significantly challenge federated learning (FL), impairing the performance of the global model in distributed frameworks. Inspired by the superior performance and generalizability of language-driven representation learning in centralized settings, we explore its potential to enhance FL for handling non-IID data. In specific, this paper introduces FedGLCL, a novel language-driven FL framework for image-text learning that uniquely integrates global language and local image features through contrastive learning, offering a new approach to tackle non-IID data in FL. FedGLCL redefines FL by avoiding separate local training models for each client. Instead, it uses contrastive learning to harmonize local image features with global textual data, enabling uniform feature learning across different local models. The utilization of a pre-trained text encoder in FedGLCL serves a dual purpose: it not only reduces the variance in local feature representations within FL by providing a stable and rich language context but also aids in mitigating overfitting, particularly to majority classes, by leveraging broad linguistic knowledge. Extensive experiments show that FedGLCL significantly outperforms state-of-the-art FL algorithms across different non-IID scenarios.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5988
Loading