Multiple Modes for Continual LearningDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Abstract: Adapting model parameters to incoming streams of data is a crucial factor to deep learning scalability. Interestingly, prior continual learning strategies in online settings inadvertently anchor their updated parameters to a local parameter subspace to remember old tasks, else drift away from the subspace and forget. From this observation, we formulate a trade-off between constructing multiple parameter modes and allocating tasks per mode. Mode-Optimized Task Allocation (MOTA), our contributed adaptation strategy, trains multiple modes in parallel, then optimizes task allocation per mode. We empirically demonstrate improvements over baseline continual learning strategies and across varying distribution shifts, namely sub-population, domain, and task shift.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
12 Replies