Multi-fineness Boundaries and the Shifted Ensemble-aware Encoding for Point Cloud Semantic Segmentation

Published: 01 Jan 2024, Last Modified: 14 Nov 2024ACM Multimedia 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Point cloud segmentation forms the foundation of 3D scene understanding. Boundaries, the intersections of regions, are prone to mis-segmentation. Current point cloud segmentation models exhibit unsatisfactory performance on boundaries. There is limited focus on explicitly addressing semantic segmentation of point cloud boundaries. We introduce a method called Multi-fineness Boundary Constraint (MBC) to tackle this challenge. By querying boundaries at various degrees of fineness and imposing feature constraints within these boundary areas, we enhance the discrimination between boundaries and non-boundaries, improving point cloud boundary segmentation. However, solely emphasizing boundaries may compromise the segmentation accuracy in broader non-boundary regions. To mitigate this, we introduce a new concept of point cloud space termed ensemble and a Shifted Ensemble-aware Perception (SEP) module. This module establishes information interactions between points with minimal computational cost, effectively capturing direct point-to-point long-range correlations within ensembles. It enhances segmentation performance for both boundaries and non-boundaries.
Loading