Abstract: Visual teach and repeat navigation (VT&R) is a framework that enables mobile robots to traverse previously learned paths. In principle, it relies on computer vision techniques that can compare the camera's current view to a model based on the images captured during the teaching phase. However, these techniques are usually not robust enough when significant changes occur in the environment between the teach and repeat phases. In this paper, we show that contrastive learning methods can learn how the environment changes and improve the robustness of a VT&R framework. We apply a fully convolutional Siamese network to register the images of the teaching and repeat phases. Their horizontal displacement between the images is then used in a visual servoing manner to keep the robot on the intended trajectory. The experiments performed on several datasets containing seasonal variations indicate that our method outperforms state-of-the-art algorithms tailored to the purpose of registering images captured in different seasons.
0 Replies
Loading