Keywords: privacy, anonymization, large language models
TL;DR: We demonstrate how large language models can be employed in an adversarial framework to surpass state-of-the-art anonymization tools both in terms of privacy and utility.
Abstract: Recent privacy research on large language models (LLMs) has shown that they achieve near-human-level performance at inferring personal data from online texts. With ever-increasing model capabilities, existing text anonymization methods are currently lacking behind regulatory requirements and adversarial threats. In this work, we take two steps to bridge this gap: First, we present a new setting for evaluating anonymization in the face of adversarial LLM inferences, allowing for a natural measurement of anonymization performance while remedying some of the shortcomings of previous metrics. Then, within this setting, we develop a novel LLM-based adversarial anonymization framework leveraging the strong inferential capabilities of LLMs to inform our anonymization procedure. We conduct a comprehensive experimental evaluation of adversarial anonymization across 13 LLMs on real-world and synthetic online texts, comparing it against multiple baselines and industry-grade anonymizers. Our evaluation shows that adversarial anonymization outperforms current commercial anonymizers both in terms of the resulting utility and privacy. We support our findings with a human study (n=50) highlighting a strong and consistent human preference for LLM-anonymized texts.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13884
Loading