Keywords: Inverse Problems, Diffusion Models, Variational Inference
Abstract: We propose Amortized Posterior Sampling (APS), a novel variational inference approach for efficient posterior sampling in inverse problems. Our method trains a conditional flow model to minimize the divergence between the variational distribution and the posterior distribution implicitly defined by the diffusion model. This results in a powerful, amortized sampler capable of generating diverse posterior samples with a single neural function evaluation, generalizing across various measurements. Unlike existing methods, our approach is unsupervised, requires no paired training data, and is applicable to both Euclidean and non-Euclidean domains. We demonstrate its effectiveness on a range of tasks, including image restoration, manifold signal reconstruction, and climate data imputation. APS significantly outperforms existing approaches in computational efficiency while maintaining competitive reconstruction quality, enabling real-time, high-quality solutions to inverse problems across diverse domains.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4562
Loading