TinyLLaVA-Video: A Simple Framework of Small-scale Large Multimodal Models for Video Understanding

Published: 01 Jan 2025, Last Modified: 17 Jul 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Video behavior recognition and scene understanding are fundamental tasks in multimodal intelligence, serving as critical building blocks for numerous real-world applications. Through large multimodal models (LMMs) have achieved remarkable progress in video understanding, most existing open-source models rely on over 7B parameters and require large-scale datasets for training, making them resource-intensive and inaccessible to many researchers. Furthermore, lightweight models face persistent challenges in effectively processing long visual sequences and temporal understanding. In this work, we introduce TinyLLaVA-Video, a lightweight yet powerful video understanding model with approximately 3.6B parameters. The cornerstone of our design is the video-level group resampler, a novel mechanism that significantly reduces and controls the number of visual tokens at the video level. Unlike traditional image-level resampler, our approach effectively mitigates redundancy while enhancing temporal comprehension, leading to improved performance on video-based tasks. In addition, TinyLLaVA-Video demonstrates exceptional efficiency, requiring only one day of training on 8 A100-40G GPUs. It surpasses several existing 7B-parameter models on multiple benchmarks. We believe this work provides a valuable foundation for future research on lightweight video understanding models. The code and weights is available at https://github.com/ZhangXJ199/TinyLLaVA-Video.
Loading