GInX-Eval: Towards In-Distribution Evaluation of Graph Neural Networks Explanations

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Evaluation, explainability, graph neural networks, out-of-distribution explanations, faithfulness
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: This paper introduces GInX-Eval, an evaluation procedure for explainability methods of GNNs to show the limitations of the very popular metric faithfulness and bring new insights on explainability methods.
Abstract: Diverse explainability methods of graph neural networks (GNN) have recently been developed to highlight the edges and nodes in the graph that contribute the most to the model predictions. However, it is not clear yet how to evaluate the *correctness* of those explanations, whether it is from a human or a model perspective. One unaddressed bottleneck in the current evaluation procedure is the problem of out-of-distribution explanations, whose distribution differs from those of the training data. This important issue affects existing evaluation metrics such as the popular faithfulness or fidelity score. In this paper, we show the limitations of faithfulness metrics. We propose **GInX-Eval** (**G**raph **In**-distribution e**X**planation **Eval**uation), an evaluation procedure of graph explanations that overcomes the pitfalls of faithfulness and offers new insights on explainability methods. Using a retraining strategy, the GInX score measures how informative removed edges are for the model and the EdgeRank score evaluates if explanatory edges are correctly ordered by their importance. GInX-Eval verifies if ground-truth explanations are instructive to the GNN model. In addition, it shows that many popular methods, including gradient-based methods, produce explanations that are not better than a random designation of edges as important subgraphs, challenging the findings of current works in the area. Results with GInX-Eval are consistent across multiple datasets and align with human evaluation.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3765
Loading