Clustering Pseudo Language Family in Multilingual Translation Models with Fisher Information Matrix

Published: 07 Oct 2023, Last Modified: 01 Dec 2023EMNLP 2023 MainEveryoneRevisionsBibTeX
Submission Type: Regular Short Paper
Submission Track: Multilinguality and Linguistic Diversity
Submission Track 2: Machine Translation
Keywords: Multilingual Translation, Low-resource
TL;DR: We propose a novel language family clustering method for multilingual models.
Abstract: In multilingual translation research, the comprehension and utilization of language families are of paramount importance. Nevertheless, clustering languages based solely on their ancestral families can yield suboptimal results due to variations in the datasets employed during the model's training phase. To mitigate this challenge, we introduce an innovative method that leverages the fisher information matrix (FIM) to cluster language families, anchored on the multilingual translation model's characteristics. We hypothesize that language pairs with similar effects on model parameters exhibit a considerable degree of linguistic congruence and should thus be grouped cohesively. This concept has led us to define pseudo language families. We provide an in-depth discussion regarding the inception and application of these pseudo language families. Empirical evaluations reveal that employing these pseudo language families enhances performance over conventional language families in adapting a multilingual translation model to unfamiliar language pairs. The proposed methodology may also be extended to scenarios requiring language similarity measurements. The source code and associated scripts can be accessed at
Submission Number: 5680