Keywords: Instruction-data separation, ML Safety, LLM Safety, LLM Security, Indirect Prompt Injection, Large Language Models, Datasets
TL;DR: We introduce a formal measure and empirical methods to evaluate the instruction-data separation in LLMs.
Abstract: Large Language Models (LLMs) show impressive results in numerous practical applications, but they lack essential safety features that are common in other areas of computer science, particularly an explicit separation of instructions and data. This makes them vulnerable to manipulations such as indirect prompt injections and generally unsuitable for safety-critical tasks. Surprisingly, there is currently no established definition or benchmark to quantify this phenomenon. In this work, we close this gap by introducing a formal measure for instruction-data separation for single-turn language models and an empirical variant that is calculable from a model’s outputs. We also present a new dataset, SEP, that allows estimating the measure for real-world models. Our results on various LLMs show that the problem of instruction-data separation is real: all models fail to achieve high separation, and canonical mitigation techniques, such as prompt engineering and fine-tuning, either fail to substantially improve separation or reduce model utility.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6849
Loading