Expectation Complete Graph Representations using Graph HomomorphismsDownload PDF

Published: 24 Nov 2022, Last Modified: 05 May 2023LoG 2022 PosterReaders: Everyone
Keywords: graph embeddings, expressiveness, graph homomorphisms
TL;DR: We propose and study a practical graph embedding that in expectation is able to distinguish all non-isomorphic graphs and can be computed in polynomial time.
Abstract: We propose and study a practical graph embedding that *in expectation* is able to distinguish all non-isomorphic graphs and can be computed in polynomial time. The embedding is based on Lovász' characterisation of graph isomorphism through an infinite dimensional vector of homomorphism counts. Recent work has studied the expressiveness of graph embeddings by comparing their ability to distinguish graphs to that of the Weisfeiler-Leman hierarchy. While previous methods have either limited expressiveness or are computationally impractical, we devise efficient sampling-based alternatives that are maximally expressive in expectation. We empirically evaluate our proposed embeddings and show competitive results on several benchmark graph learning tasks.
Type Of Submission: Extended abstract (max 4 main pages).
Agreement: Check this if you are okay with being contacted to participate in an anonymous survey.
PDF File: pdf
Type Of Submission: Extended abstract.
Software: https://github.com/pwelke/homcount
Poster: png
Poster Preview: png
6 Replies

Loading