CoBIT: A Contrastive Bi-directional Image-Text Generation Model

Published: 16 Jan 2024, Last Modified: 08 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Contrastive Pre-training, Vision-Language, Text-to-Image Generation, Auto-regressive Model.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: A contrastive bi-directional image-text generation model that unify contrastive learning, image-to-text generation and text-to-image generation.
Abstract: The field of Vision-and-Language (VL) has witnessed a proliferation of pretrained foundation models. Current techniques typically employ only one type of training objective, whether it's (1) contrastive objectives (like CLIP), (2) image-to-text generative objectives (like PaLI), or (3) text-to-image generative objectives (like Parti). However, all these three objectives are mutually relevant and are all based on image-text pairs. Intuitively, the first two objectives can be considered as complementary projections between two modalities, and contrastive learning can preserve global alignment and generations facilitate fine-grained understanding. Inspired by this, we present a Contrastive Bi-directional Image-Text generation model (CoBIT) to first time unify the three pre-training objectives in one framework. Specifically, CoBIT employs a novel unicoder-decoder structure consisting of an image unicoder, a text unicoder, and a cross-modal decoder. The image/text unicoders can switch between encoding and decoding in different tasks, enabling flexibility and shared knowledge that benefits both image-to-text and text-to-image generations. CoBIT achieves superior performance in image understanding, image-text understanding (Retrieval, Captioning, VQA, SNLI-VE), and text-based content creation, particularly in zero-shot scenarios.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 2322
Loading