Safe Nonlinear Control Using Robust Neural Lyapunov-Barrier FunctionsDownload PDF

19 Jun 2021, 10:04 (edited 29 Oct 2021)CoRL2021 PosterReaders: Everyone
  • Keywords: Certified control, learning for control
  • Abstract: Safety and stability are common requirements for robotic control systems; however, designing safe, stable controllers remains difficult for nonlinear and uncertain models. We develop a model-based learning approach to synthesize robust feedback controllers with safety and stability guarantees. We take inspiration from robust convex optimization and Lyapunov theory to define robust control Lyapunov barrier functions that generalize despite model uncertainty. We demonstrate our approach in simulation on problems including car trajectory tracking, nonlinear control with obstacle avoidance, satellite rendezvous with safety constraints, and flight control with a learned ground effect model. Simulation results show that our approach yields controllers that match or exceed the capabilities of robust MPC while reducing computational costs by an order of magnitude. We provide source code at github.com/dawsonc/neural_clbf/.
  • Supplementary Material: zip
  • Poster: png
20 Replies

Loading