NAGphormer: A Tokenized Graph Transformer for Node Classification in Large GraphsDownload PDF

Anonymous

22 Sept 2022, 12:37 (modified: 15 Nov 2022, 08:41)ICLR 2023 Conference Blind SubmissionReaders: Everyone
Keywords: Graph Transformer, node classification, neighborhood aggregation, multi-hop neighborhood
TL;DR: We propose a novel Graph Transformer that utilizes the neighborhood aggregation of multiple hops to build the input sequence of token vectors and thereby can handle large graphs efficiently.
Abstract: The graph Transformer emerges as a new architecture and has shown superior performance on various graph mining tasks. In this work, we observe that existing graph Transformers treat nodes as independent tokens and construct a single long sequence composed of all node tokens so as to train the Transformer model, causing it hard to scale to large graphs due to the quadratical complexity on the number of nodes for the self-attention computation. To this end, we propose a Neighborhood Aggregation Graph Transformer (NAGphormer) that treats each node as a sequence containing a series of tokens constructed by our proposed Hop2Token module. For each node, Hop2Token aggregates the neighborhood features from different hops into different representations and thereby produces a sequence of token vectors as one input. In this way, NAGphormer could be trained in a mini-batch manner and thus could scale to large graphs. Moreover, we mathematically show that as compared to a category of advanced Graph Neural Networks (GNNs), the decoupled Graph Convolutional Network, NAGphormer could learn more informative node representations from the multi-hop neighborhoods. Extensive experiments on benchmark datasets from small to large are conducted to demonstrate that NAGphormer consistently outperforms existing graph Transformers and mainstream GNNs.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
11 Replies

Loading