The Genomics Long-Range Benchmark: Advancing DNA Language Models

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: DNA, Language Models, Genomics, Benchmark
TL;DR: A benchmark to test the long-range capabilities of genomics language models.
Abstract: The advent of language models (LMs) in genomics necessitates benchmarks that can assess models’ capabilities and limitations. In contrast to protein models, DNA LMs can be used to study non-coding regions of the genome and must account for unique challenges, especially interactions across long sequence lengths. However, existing benchmarks for DNA LMs are defined over short sequence datasets and can involve tasks that are often not considered to be biologically meaningful. Here, we present the Human Genomics Long-Range Benchmark (LRB), which focuses on biologically meaningful tasks and supports long-range contexts. We complement our benchmark with fine-tuning recipes that meaningfully improve performance and affect model evaluation. We evaluate DNA LMs across nine compiled human genome tasks and observe that DNA LMs achieve competitive performance relative to supervised baselines on several tasks (e.g., genome annotation), but there remains a significant gap in domains, such as variant effect and gene expression prediction. Additionally, we introduce a visualization tool to examine model performance split by various genomic properties. Lastly, we present methods for context-length extrapolation of transformer-based models that enable studying the effect of context length on DNA LM performance.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7639
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview