Multilingual Continual Learning using Attention Distillation

Published: 01 Jan 2025, Last Modified: 03 Oct 2025COLING (Industry) 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Query-product relevance classification is crucial for e-commerce stores like Amazon, ensuring accurate search results that match customer intent. Using a unified multilingual model across multiple languages/marketplaces tends to yield superior outcomes but also presents challenges, especially in maintaining performance across all languages when the model is updated or expanded to include a new one. To tackle this, we examine a multilingual continual learning (CL) framework focused on relevance classification tasks and address the issue of catastrophic forgetting. We propose a novel continual learning approach called attention distillation, which sequentially adds adapters for each new language and incorporates a fusion layer above language-specific adapters. This fusion layer distills attention scores from the previously trained fusion layer, focusing on the older adapters. Additionally, translating a portion of the new language data into older ones supports backward knowledge transfer. Our method reduces trainable parameters by 80%, enhancing computational efficiency and enabling frequent updates, while achieving a 1-3% ROC-AUC improvement over single marketplace baselines and outperforming SOTA CL methods on proprietary and external datasets.
Loading