Introductions and evolutions of SARS-CoV-2 strains in Japan
Abstract: COVID-19 caused by SARS-CoV-2 was first identified in Japan on January 15th, 2020, soon after the pandemic originated in Wuhan, China. Subsequently, Japan experienced three distinct waves of the outbreak in the span of a year and has been attributed to new exogenous strains and evolving existing strains. Japan engaged very early on in tracking different COVID-19 strains and have sequenced approximately 5% of all confirmed cases. While Japan has enforced stringent airport surveillance on cross-border travelers and returnees, some carriers appear to have advanced through the quarantine stations undetected. In this study 30493 genomes sampled in Japan were analyzed to understand the strains, heterogeneity and temporal evolution of different SARS-CoV-2 strains. We identified 12 discrete strains with a substantial number of cases with most strains possessing the spike (S) D614G and nucleocapsid (N) 203_204delinsKR mutations. 155 distinct strains have been introduced into Japan and 39 of them were introduced after strict quarantine policy was implemented. In particular, the B.1.1.7 strain, that emerged in the United Kingdom (UK) in September 2020, has been circulating in Japan since late 2020 after eluding cross-border quarantine stations. Similarly, the B.1.351 strain dubbed the South African variant, P.1 Brazilian strain and R.1 strain with the spike E484K mutation have been detected in Japan. At least 14 exogenous B.1.1.7 sub-strains have been independently introduced in Japan as of late March 2021, and these strains carry mutations that give selective advantage including N501Y, H69_V70del, and E484K that confer increased transmissibility, reduced efficacy to vaccines and possible increased virulence. Furthermore, various strains, which harbor multiple variants in the PCR primers and the probe developed by National Institute of Infectious Disease (NIID), are emerging. It is imperative that the quarantine policy be revised, cross-border surveillance reinforced, and new public health measures implemented to mitigate further transmission of this deadly disease and to identify strains that may engender resistance to vaccines.
Loading