Adaptive Block-wise Learning for Knowledge DistillationDownload PDF

Published: 01 Feb 2023, 19:30, Last Modified: 13 Feb 2023, 23:26Submitted to ICLR 2023Readers: Everyone
Keywords: Knowledge distillation, Local error signals, Bilevel optimization
Abstract: Knowledge distillation allows the student network to improve its performance under the supervision of transferred knowledge. Existing knowledge distillation methods are implemented under the implicit hypothesis that knowledge from teacher and student contributes to each layer of the student network to the same extent. In this work, we argue that there should be different contributions of knowledge from the teacher and the student during training for each layer. Experimental results evidence this argument. To the end, we propose a novel Adaptive Block-wise Learning~(ABL) for Knowledge Distillation to automatically balance teacher-guided knowledge between self-knowledge in each block. Specifically, to solve the problem that the error backpropagation algorithm cannot assign weights to each block of the student network independently, we leverage the local error signals to approximate the global error signals on student objectives. Moreover, we utilize a set of meta variables to control the contribution of the student knowledge and teacher knowledge to each block during the training process. Finally, the extensive experiments prove the effectiveness of our method. Meanwhile, ABL provides an insightful view that in the shallow blocks, the weight of teacher guidance is greater, while in the deep blocks, student knowledge has more influence.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
5 Replies