Fast and Accurate $k$-means++ via Rejection SamplingDownload PDFOpen Website

2020 (modified: 17 Apr 2023)NeurIPS 2020Readers: Everyone
Abstract: k$-means++ \cite{arthur2007k} is a widely used clustering algorithm that is easy to implement, has nice theoretical guarantees and strong empirical performance. Despite its wide adoption, $k$-means++ sometimes suffers from being slow on large data-sets so a natural question has been to obtain more efficient algorithms with similar guarantees. In this paper, we present such a near linear time algorithm for $k$-means++ seeding. Interestingly our algorithm obtains the same theoretical guarantees as $k$-means++ and significantly improves earlier results on fast $k$-means++ seeding. Moreover, we show empirically that our algorithm is significantly faster than $k$-means++ and obtains solutions of equivalent quality.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview