Keywords: causal inference, double robustness, bias-adjustment, influence function, semiparametric, offline reinforcement learning
Abstract: We study a constructive procedure that approximates Gateaux derivatives for statistical functionals by finite-differencing, with attention to causal inference functionals. We focus on the case where probability distributions are not known a priori but need also to be estimated from data, leading to empirical Gateaux derivatives, and study relationships between empirical, numerical, and analytical Gateaux derivatives. Starting with a case study of counterfactual mean estimation, we verify the exact relationship between finite-differences and the analytical Gateaux derivative. We then derive requirements on the rates of numerical approximation in perturbation and smoothing that preserve statistical benefits. We study more complicated functionals such as dynamic treatment regimes and the linear-programming formulation for policy optimization infinite-horizon Markov decision processes. In the case of the latter, this approach can be used to approximate bias adjustments in the presence of arbitrary constraints, illustrating the usefulness of constructive approaches for Gateaux derivatives. We find that, omitting unfavorable dimension dependence of smoothing, although rate-double robustness permits for coarser rates of perturbation size than implied by generic approximation analysis of finite-differences for the case of the counterfactual mean, this is not the case for the infinite-horizon MDP policy value.
Supplementary Material: zip
23 Replies
Loading