Spatialemb: Extract and Encode Spatial Information for 1-Stage Multi-Channel Multi-Speaker ASR on Arbitrary Microphone Arrays

Published: 01 Jan 2024, Last Modified: 05 Nov 2025SLT 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Spatial information is a critical clue for multi-channel multispeaker target speech recognition. Most state-of-the-art multi-channel Automatic Speech Recognition (ASR) systems extract spatial features only during the speech separation stage, followed by standard single-channel ASR on the separated speech. This approach results in an inefficient, lengthy pipeline and sub-optimal ASR performance due to the accumulated errors from preprocessing modules. Furthermore, most spatial feature extraction methods depend on the knowledge of speaker positions and microphone topology, making the systems reliant on specific settings and challenging to adapt to new equipment. In this work, we propose a solution to these issues with a lightweight embedding module named SpatialEmb, which extracts and encodes spatial information directly for the ASR model, supporting both fixed and arbitrary microphone topology. We conduct comprehensive experiments on AliMeeting, a real meeting corpus, to determine the optimal model design for SpatialEmb in terms of both performance and efficiency. Our best model trained with 105 hours Train-Ali-far achieves 17.04% and 20.32% character error rates (CER) on the Eval and Test sets, establishing a new state-of-the-art result with the same training data.
Loading