AURA: A Diagnostic Framework for Tracking User Satisfaction of Interactive Planning Agents

Published: 06 Oct 2025, Last Modified: 04 Nov 2025MTI-LLM @ NeurIPS 2025 PosterEveryoneRevisionsBibTeXCC BY-ND 4.0
Keywords: Interactive Agent Evaluation, User Satisfaction
TL;DR: We introduce an agent evaluation framework through a behavioral stage of agentic decision making processes for estimating user satisfaction.
Abstract: The growing capabilities of large language models (LLMs) in instruction-following and context-understanding lead to the era of agents with numerous applications. Among these, task planning agents have become especially prominent in realistic scenarios involving complex internal pipelines, such as context understanding, tool management, and response generation. However, existing benchmarks predominantly evaluate agent performance based on task completion as a proxy for overall effectiveness. We hypothesize that merely improving task completion is misaligned with maximizing user satisfaction, as users interact with the entire agentic process and not only the end result. To address this gap, we propose **AURA**, an Agent-User inteRaction Assessment framework that conceptualizes the behavioral stages of interactive task planning agents. AURA offers a comprehensive assessment of agent through a set of atomic LLM evaluation criteria, allowing researchers and practitioners to diagnose specific strengths and weaknesses within the agent's decision-making pipeline. Our analyses show that agents excel in different behavioral stages, with user satisfaction shaped by both outcomes and intermediate behaviors. We also highlight future directions, including systems that leverage multiple agents and the limitations of user simulators in task planning.
Submission Number: 146
Loading