Abstract: Arabic Optical Character Recognition (OCR) and Handwriting Recognition (HWR) pose unique challenges due to the cursive and context-sensitive nature of the Arabic script. This study introduces ***Qalam***, a novel foundation model designed for Arabic OCR and HWR, built on a SwinV2 encoder and RoBERTa decoder architecture. Our model significantly outperforms existing methods, achieving a Word Error Rate (WER) of just 0.80% in HWR tasks and 1.18% in OCR tasks. We train ***Qalam*** on a diverse dataset, including over 4.5 million images from Arabic manuscripts and a synthetic dataset comprising 60k image-text pairs. Notably, ***Qalam*** demonstrates exceptional handling of Arabic diacritics, a critical feature in Arabic scripts. Furthermore, it shows a remarkable ability to process high-resolution inputs, addressing a common limitation in current OCR systems. These advancements underscore ***Qalam***’s potential as a leading solution for Arabic script recognition, offering a significant leap in accuracy and efficiency.
Loading