Abstract: A clinical dialogue is a conversation between a clinician and a patient to share medical information, which is critical in clinical decision-making. The reliance on manual note-taking is highly inefficient and leads to transcription errors when digitising notes. Speech-to-text applications designed using Automatic Speech Recognition (ASR) can potentially overcome these errors using post-ASR error correction. Pre-trained language models are increasingly used in this area. However, the performance suffers from the lack of domain-specific vocabulary and the mismatch between error correction and pre-training objectives. This research explores these challenges in gastrointestinal specialism by introducing self-supervision strategies to fine-tune pre-trained language models for clinical dialogue error correction. We show that our mask-filling objective specialised for the medical domain (med-mask-filling) outperforms the best performing commercial ASR system by 10.27%.
0 Replies
Loading