Zero-shot Synthesis with Group-Supervised LearningDownload PDF

Sep 28, 2020 (edited Feb 16, 2021)ICLR 2021 PosterReaders: Everyone
  • Keywords: Disentangled representation learning, Group-supervised learning, Zero-shot synthesis, Knowledge factorization
  • Abstract: Visual cognition of primates is superior to that of artificial neural networks in its ability to “envision” a visual object, even a newly-introduced one, in different attributes including pose, position, color, texture, etc. To aid neural networks to envision objects with different attributes, we propose a family of objective functions, expressed on groups of examples, as a novel learning framework that we term Group-Supervised Learning (GSL). GSL allows us to decompose inputs into a disentangled representation with swappable components, that can be recombined to synthesize new samples. For instance, images of red boats & blue cars can be decomposed and recombined to synthesize novel images of red cars. We propose an implementation based on auto-encoder, termed group-supervised zero-shot synthesis network (GZS-Net) trained with our learning framework, that can produce a high-quality red car even if no such example is witnessed during training. We test our model and learning framework on existing benchmarks, in addition to a new dataset that we open-source. We qualitatively and quantitatively demonstrate that GZS-Net trained with GSL outperforms state-of-the-art methods
  • Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
  • One-sentence Summary: To aid neural networks to envision objects with different attributes, we propose GSL which allows us to decompose inputs into a disentangled representation with swappable components, that can be recombined to synthesize new samples.
  • Supplementary Material: zip
16 Replies

Loading