Local Disentanglement in Variational Auto-Encoders Using Jacobian $L_1$ RegularizationDownload PDF

21 May 2021, 20:45 (edited 26 Oct 2021)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: Representation Learning, Sparsity, Variational Auto-Encoders, Disentanglement, Regularization
  • Abstract: There have been many recent advances in representation learning; however, unsupervised representation learning can still struggle with model identification issues related to rotations of the latent space. Variational Auto-Encoders (VAEs) and their extensions such as $\beta$-VAEs have been shown to improve local alignment of latent variables with PCA directions, which can help to improve model disentanglement under some conditions. Borrowing inspiration from Independent Component Analysis (ICA) and sparse coding, we propose applying an $L_1$ loss to the VAE's generative Jacobian during training to encourage local latent variable alignment with independent factors of variation in images of multiple objects or images with multiple parts. We demonstrate our results on a variety of datasets, giving qualitative and quantitative results using information theoretic and modularity measures that show our added $L_1$ cost encourages local axis alignment of the latent representation with individual factors of variation.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
  • Code: https://github.com/travers-rhodes/jlonevae
11 Replies