Reinforcement Learning with Iterative Reasoning for Merging in Dense TrafficDownload PDFOpen Website

2020 (modified: 18 Apr 2023)CoRR 2020Readers: Everyone
Abstract: Maneuvering in dense traffic is a challenging task for autonomous vehicles because it requires reasoning about the stochastic behaviors of many other participants. In addition, the agent must achieve the maneuver within a limited time and distance. In this work, we propose a combination of reinforcement learning and game theory to learn merging behaviors. We design a training curriculum for a reinforcement learning agent using the concept of level-$k$ behavior. This approach exposes the agent to a broad variety of behaviors during training, which promotes learning policies that are robust to model discrepancies. We show that our approach learns more efficient policies than traditional training methods.
0 Replies

Loading