Node embeddings in dynamic graphs

Published: 23 Aug 2019, Last Modified: 30 Sept 2024Applied Network ScienceEveryoneCC BY 4.0
Abstract: In this paper, we present algorithms that learn and update temporal node embeddings on the fly for tracking and measuring node similarity over time in graph streams. Recently, several representation learning methods have been proposed that are capable of embedding nodes in a vector space in a way that captures the network structure. Most of the known techniques extract embeddings from static graph snapshots. By contrast, modeling the dynamics of the nodes in temporal networks requires evolving node representations. In order to update node representations that reflect the temporal changes in the local graph structure, we rely on ideas for data stream algorithms. For example, we assess neighborhood overlap by a MinHash fingerprint-based algorithm.
Loading