Abstract: Eliminating Multi-Path Interference (MPI) stands as a significant unresolved challenge in the domain of depth estimation using Time-of-Flight (ToF) cameras. ToF data is typically influenced by significant noise and artifacts stemming from MPI. Although a variety of conventional methods have been suggested to enhance ToF data quality, the application of machine learning techniques has been infrequent, primarily due to the scarcity of authentic training data with accurate depth information. This paper introduces an approach that eliminates the dependency on labeled real-world data within the learning framework. We employ a U-Net trained on the data with ground truth in a supervised manner, enabling it to leverage multi-frequency ToF data for MPI correction. Concurrently, we compare three channels as input with one channel and two channels. Our experimental results convincingly showcase the effectiveness of this approach in reducing noise in real-world data.
Loading