Container Rehandling Probability Prediction Model Based on Seq2Seq Network

Guojie Chen, Weidong Zhao, Xianhui Liu, Mingyue Wei

Published: 01 Jan 2024, Last Modified: 06 Nov 2025IEEE Transactions on ReliabilityEveryoneRevisionsCC BY-SA 4.0
Abstract: Due to the strong uncertainty in the retrieval order of containers and the complex coupling relationship between container yard production equipment, it is challenging for yards to formulate an appropriate slot allocation strategy to control the proportion of rehandling containers. Meanwhile, the unpredictable performance of the slot allocation strategy results in the yard lacking the means to adjust the allocation strategy. To address these issues, an efficient container rehandling probability prediction model based on deep learning has been proposed to assist yards in formulating and adjusting slot allocation strategy. Moreover, we design a container slot allocation strategy driven by the predictive container rehandling probability for reducing the proportion of rehandling container at yards. Extensive experiments on the container storage dataset demonstrate that: 1) the prediction model based on deep learning enables to efficiently and precisely predict the container rehandling, 2) taking Seq2Seq network as the prediction layer of model outperforms other deep sequence models on MSE, MAE, and accuracy, and 3) the slot allocation strategy based on the predictive container rehandling probability can effectively reduce the probability of the rehandling container.
Loading