T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients

Published: 01 Jan 2025, Last Modified: 12 Nov 2025IEEE Intell. Syst. 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Modern learning models, while powerful, often exhibit a complexity level that renders them opaque black boxes, lacking transparency and hindering our understanding of their decision-making processes. Opacity challenges the practical application of machine learning, especially in critical domains requiring informed decisions. Explainable artificial intelligence (XAI) addresses that challenge, unraveling the complexity of black boxes by providing explanations. Feature attribution/importance XAI stands out for its ability to delineate the significance of input features in predictions. However, most attribution methods have limitations, such as instability, when divergent explanations result from similar or the same instance. This work introduces T-Explainer, a novel additive attribution explainer based on the Taylor expansion that offers desirable properties, such as local accuracy and consistency. We demonstrate T-Explainer’s effectiveness and stability over multiple runs in quantitative benchmark experiments against well-known attribution methods. Additionally, we provide several tools to evaluate and visualize explanations, turning T-Explainer into a comprehensive XAI framework.
Loading