Cardiac LGE MRI Segmentation With Cross-Modality Image Augmentation and Improved U-NetDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 11 May 2023IEEE J. Biomed. Health Informatics 2023Readers: Everyone
Abstract: Image segmentation is a challenging problem in imaging informatics, which stems from the intersection of imaging techniques, computer science and biomedicine. In particular, accurate segmentation of cardiac structures in late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is of great clinical importance for cardiac function assessment and myocardial disease diagnosis. However, it is a well-known challenge due to its special imaging modality and the lack of labeled LGE samples. In this paper, we propose an unsupervised ventricular segmentation algorithm that can perform biventricular segmentation of LGE images in the absence of labeled LGE data. There are two primary modules, the data augmentation procedure and the segmentation network. The easily available annotated balanced-Steady State Free Precession (bSSFP) images are employed for cross-modal data augmentation by image translation, where a single bSSFP image is converted into multiple synthetic LGE images while preserving the original morphological structure. Then, the proposed segmentation network is trained with the synthetic LGE images and used for segmenting real LGE images. Validation experiments demonstrated the effectiveness and advantages of the proposed algorithm.
0 Replies

Loading