Keywords: Deep neural networks, convex duality, convex optimization
Abstract: Training deep neural networks is a well-known highly non-convex problem. In recent works, it is shown that there is no duality gap for regularized two-layer neural networks with ReLU activation, which enables global optimization via convex programs. For multi-layer linear networks with vector outputs, we formulate convex dual problems and demonstrate that the duality gap is non-zero for depth three and deeper networks. However, by modifying the deep networks to more powerful parallel architectures, we show that the duality gap is exactly zero. Therefore, strong convex duality holds, and hence there exist equivalent convex programs that enable training deep networks to global optimality. We also demonstrate that the weight decay regularization in the parameters explicitly encourages low-rank solutions via closed-form expressions. For three-layer non-parallel ReLU networks, we show that strong duality holds for rank-1 data matrices, however, the duality gap is non-zero for whitened data matrices. Similarly, by transforming the neural network architecture into a corresponding parallel version, the duality gap vanishes.
11 Replies
Loading