Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial AttacksDownload PDF

21 May 2021, 20:48 (edited 25 Oct 2021)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: ODE, stable, Ordinary Differential Equation, adversarial attack
  • Abstract: Deep neural networks (DNNs) are well-known to be vulnerable to adversarial attacks, where malicious human-imperceptible perturbations are included in the input to the deep network to fool it into making a wrong classification. Recent studies have demonstrated that neural Ordinary Differential Equations (ODEs) are intrinsically more robust against adversarial attacks compared to vanilla DNNs. In this work, we propose a neural ODE with Lyapunov-stable equilibrium points for defending against adversarial attacks (SODEF). By ensuring that the equilibrium points of the ODE solution used as part of SODEF are Lyapunov-stable, the ODE solution for an input with a small perturbation converges to the same solution as the unperturbed input. We provide theoretical results that give insights into the stability of SODEF as well as the choice of regularizers to ensure its stability. Our analysis suggests that our proposed regularizers force the extracted feature points to be within a neighborhood of the Lyapunov-stable equilibrium points of the SODEF ODE. SODEF is compatible with many defense methods and can be applied to any neural network's final regressor layer to enhance its stability against adversarial attacks.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
  • Code: https://github.com/KANGQIYU/SODEF
16 Replies

Loading