Keywords: Combinatorial Optimization, Discrete Optimization, Learning for Combinatorial Optimization, Unsupervised Learning for Combinatorial Optimization, Learning for Combinatorial Optimization
TL;DR: A scalable combinatorial optimization solver integrating gradient-based updates with quasi-quantum annealing
Abstract: Learning-based methods have gained attention as general-purpose solvers due to their ability to automatically learn problem-specific heuristics, reducing the need for manually crafted heuristics. However, these methods often face scalability challenges. To address these issues, the improved Sampling algorithm for Combinatorial Optimization (iSCO), using discrete Langevin dynamics, has been proposed, demonstrating better performance than several learning-based solvers. This study proposes a different approach that integrates gradient-based update through continuous relaxation, combined with Quasi-Quantum Annealing (QQA). QQA smoothly transitions the objective function, starting from a simple convex function, minimized at half-integral values, to the original objective function, where the relaxed variables are minimized only in the discrete space. Furthermore, we incorporate parallel run communication leveraging GPUs to enhance exploration capabilities and accelerate convergence. Numerical experiments demonstrate that our method is a competitive general-purpose solver, achieving performance comparable to iSCO and learning-based solvers across various benchmark problems. Notably, our method exhibits superior speed-quality trade-offs for large-scale instances compared to iSCO, learning-based solvers, commercial solvers, and specialized algorithms.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6370
Loading