Symmetric Models for Radar Response Modeling

Published: 29 Nov 2023, Last Modified: 29 Nov 2023NeurReps 2023 PosterEveryoneRevisionsBibTeX
Submission Track: Proceedings
Keywords: Radar, Equivariance, Object Meshes
TL;DR: We present the Radar Equivariant Model, the first SO(3)-equivariant model for predicting radar responses from object meshes.
Abstract: Many radar applications require complex radar signature models that incorporate characteristics of an object's shape and dynamics as well as sensing effects. Even though high-fidelity, first-principles radar simulators are available, they tend to be resource-intensive and do not easily support the requirements of agile and large-scale AI development and evaluation frameworks. Deep learning represents an attractive alternative to these numerical methods, but can have large data requirements and limited generalization ability. In this work, we present the Radar Equivariant Model (REM), the first $SO(3)$-equivaraint model for predicting radar responses from object meshes. By constraining our model to the symmetries inherent to radar sensing, REM is able to achieve a high level reconstruction of signals generated by a first-principles radar model and shows improved performance and sample efficiency over other encoder-decoder models.
Submission Number: 38
Loading