Safety Alignment Shouldn't Be Complicated

ICLR 2025 Conference Submission1188 Authors

16 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Safety Alignment, Alignment Tax, Safety-critical Neurons, Large Language Models (LLMs)
Abstract: As large language models (LLMs) are overwhelmingly more and more integrated into various applications, ensuring they generate safe and aligned responses is a pressing need. Previous research on alignment has largely focused on general instruction-following but has often overlooked the unique properties and challenges of safety alignment, such as the brittleness of safety mechanisms. To bridge the gap, we propose the Superficial Safety Alignment Hypothesis (SSAH), which posits that safety alignment should teach an otherwise unsafe model to choose the correct reasoning direction - interpreted as a specialized binary classification task - and incorporate a refusal mechanism with multiple reserved fallback options. Furthermore, through SSAH, we hypothesize that safety guardrails in LLMs can be established by just a small number of essential components. To verify this, we conduct an ablation study and successfully identify four types of attribute-critical components in safety-aligned LLMs: Exclusive Safety Unit (ESU), Exclusive Utility Unit (EUU), Complex Unit (CU), and Redundant Unit (RU). Our findings show that freezing certain safety-critical components \textbf{(7.5\%)} during fine-tuning allows the model to retain its safety attributes while adapting to new tasks. Additionally, we show that leveraging redundant units \textbf{(20\%)} in the pre-trained model as an ``alignment budget'' can effectively minimize the alignment tax while achieving the alignment goal. All considered, this paper concludes that the atomic functional unit for safety in LLMs is at the neuron level and underscores that safety alignment should not be complicated. We believe this work contributes to the foundation of efficient and scalable safety alignment for future LLMs.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1188
Loading