Temporal Flexibility in Spiking Neural Networks: Towards Generalization Across Time Steps and Deployment Friendliness
Keywords: spiking neural networks, direct training, event-driven friendliness
TL;DR: We 1) introduced mixed-timestep training to optimize SNNs for event-driven chip deployment and energy-accuracy trade-offs, and 2) validated our approach on GPU-based framework, real neuromorphic hardware and event-driven chip simulator.
Abstract: Spiking Neural Networks (SNNs), models inspired by neural mechanisms in the brain, allow for energy-efficient implementation on neuromorphic hardware. However, SNNs trained with current direct training approaches are constrained to a specific time step. This "temporal inflexibility" 1) hinders SNNs' deployment on time-step-free fully event-driven chips and 2) prevents energy-performance balance based on dynamic inference time steps. In this study, we first explore the feasibility of training SNNs that generalize across different time steps. We then introduce Mixed Time-step Training (MTT), a novel method that improves the temporal flexibility of SNNs, making SNNs adaptive to diverse temporal structures. During each iteration of MTT, random time steps are assigned to different SNN stages, with spikes transmitted between stages via communication modules. After training, the weights are deployed and evaluated on both time-stepped and fully event-driven platforms. Experimental results show that models trained by MTT gain remarkable temporal flexibility, friendliness for both event-driven and clock-driven deployment (nearly lossless on N-MNIST and 10.1\% higher than standard methods on CIFAR10-DVS), enhanced network generalization, and near SOTA performance. To the best of our knowledge, this is the first work to report the results of large-scale SNN deployment on fully event-driven scenarios.
Supplementary Material: zip
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2707
Loading