Keywords: Bias Mitigation, Action Recognition
TL;DR: We propose an effective adversarial framework for mitigating static biases in action recognition models without requiring prior knowledge of bias attributes.
Abstract: Bias in machine learning models can lead to unfair decision making, and while it has been well-studied in the image and text domains, it remains underexplored in action recognition. Action recognition models often suffer from background bias (i.e., inferring actions based on background cues) and foreground bias (i.e., relying on subject appearance), which can be detrimental to real-life applications such as autonomous vehicles or assisted living monitoring. While prior approaches have mainly focused on mitigating background bias using specialized augmentations, we thoroughly study both foreground and background bias. We propose ALBAR, a novel adversarial training method that mitigates foreground and background biases without requiring specialized knowledge of the bias attributes. Our framework applies an adversarial cross-entropy loss to the sampled static clip (where all the frames are the same) and aims to make its class probabilities uniform using a proposed entropy maximization loss. Additionally, we introduce a gradient penalty loss for regularization against the debiasing process. We evaluate our method on established background and foreground bias protocols, setting a new state-of-the-art and strongly improving combined debiasing performance by over 12% absolute on HMDB51.
Furthermore, we identify an issue of background leakage in the existing UCF101 protocol for bias evaluation which provides a shortcut to predict actions and does not provide an accurate measure of the debiasing capability of a model. We address this issue by proposing more fine-grained segmentation boundaries for the actor, where our method also outperforms existing approaches.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7609
Loading