Quantifying the Optimization and Generalization Advantages of Graph Neural Networks Over Multilayer Perceptrons
Abstract: Graph neural networks (GNNs) have demonstrated remarkable capabilities in learning from graph-structured data, often outperforming traditional Multilayer Perceptrons (MLPs) in numerous graph-based tasks. Although existing works have demonstrated the benefits of graph convolution through Laplacian smoothing, expressivity or separability, there remains a lack of quantitative analysis comparing GNNs and MLPs from an optimization and generalization perspective. This study aims to address this gap by examining the role of graph convolution through feature learning theory. Using a signal-noise data model, we conduct a comparative analysis of the optimization and generalization between two-layer graph convolutional networks (GCNs) and their MLP counterparts. Our approach tracks the trajectory of signal learning and noise memorization in GNNs, characterizing their post-training generalization. We reveal that GNNs significantly prioritize signal learning, thus enhancing the regime of {low test error} over MLPs by $D^{q-2}$ times, where $D$ denotes a node's expected degree and $q$ is the power of ReLU activation function with $q>2$. This finding highlights a substantial and quantitative discrepancy between GNNs and MLPs in terms of optimization and generalization, a conclusion further supported by our empirical simulations on both synthetic and real-world datasets.
Submission Number: 982
Loading