Towards Equivariant Graph Contrastive Learning via Cross-Graph AugmentationDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: equivariant, self-supervised learning, contrastive learning, graph neural networks
TL;DR: We propose a cross-graph augmentation to achieve equivariant self-supervised learning on graphs.
Abstract: Leading graph contrastive learning (GCL) frameworks conform to the invariance mechanism by encouraging insensitivity to different augmented views of the same graph. Despite the promising performance, invariance worsens representation when augmentations cause aggressive semantics shifts. For example, dropping the super-node can dramatically change a social network's topology. In this case, encouraging invariance to the original graph can bring together dissimilar patterns and hurt the task of instance discrimination. To resolve the problem, we get inspiration from equivariant self-supervised learning and propose Equivariant Graph Contrastive Learning (E-GCL) to encourage the sensitivity to global semantic shifts. Viewing each graph as a transformation to others, we ground the equivariance principle as a cross-graph augmentation -- graph interpolation -- to simulate global semantic shifts. Without using annotation, we supervise the representation of cross-graph augmented views by linearly combining the representations of their original samples. This simple but effective equivariance principle empowers E-GCL with the ability of cross-graph discrimination. It shows significant improvements over the state-of-the-art GCL models in unsupervised learning and transfer learning. Further experiments demonstrate E-GCL's generalization to various graph pre-training frameworks. Code is available at \url{https://anonymous.4open.science/r/E-GCL/}
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
28 Replies

Loading