Keywords: RLHF
TL;DR: RLHF for token-wise rewards
Abstract: Reinforcement learning from human feedback (RLHF) provides a paradigm for aligning large language models (LLMs) with human preferences. This involves the initial training of a reward model based on pairwise human feedback. The reward model is subsequently utilized in reinforcement learning to assess the scores of each generated sentence as a whole, further guiding the optimization of LLMs. However, current approaches have a significant shortcoming: They allocate a single, sparse, and delayed reward to an entire sequence of output. This may overlook some significant individual contributions of each token towards the desired outcome. To overcome this limitation, our paper proposes a novel reward redistribution method called R3HF, which facilitates a more fine-grained, token-level reward allocation. Specifically, our method treats the reward prediction task of the reward model as a regression problem. As a result, the redistributed rewards are computed by evaluating the specific contribution of each token to the reward model's output. This detailed approach improves the model's understanding of language nuances, leading to more precise enhancements in its performance. Our method is crafted to integrate seamlessly with most current techniques while incurring minimal computational costs. Through comprehensive experiments across diverse datasets and tasks, we have verified the effectiveness and superiority of our approach.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4789
Loading